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We consider a double junction system in the Coulomb blockade regime with an island with discrete energy
levels and analyze the effect of electromagnetic fluctuations on elastic cotunneling. We obtain the analytic
expression for the elastic cotunneling current at zero temperature, which shows the power-law suppression of
cotunneling at low voltages due to circuit impedance I�V1+2 Re Z�0�/RK. The results will be useful for calculat-
ing the accuracy of single-electron devices used in metrology.

DOI: 10.1103/PhysRevB.78.155423 PACS number�s�: 73.23.Hk, 85.35.Gv

I. INTRODUCTION

A proposal for a new International System of Units �SI� is
currently being considered by the metrology community.1

According to this proposal, the new SI �sometimes referred
to as quantum SI� would be based on a set of exactly defined
values of fundamental constants. Before this system is
adopted, an important issue regarding the value of Planck’s
constant, h, needs to be resolved. Namely, the value of h
obtained from the watt balance experiment is significantly
lower than the value deduced from combined x-ray and op-
tical interferometry measurements of the lattice spacing of a
single silicon crystal d220, together with the measured value
of the molar volume of silicon Vm�Si� �fractional difference
of �10−6�.2,3 The virtual electron transfer through a small
metallic island that we consider in this paper is important for
the level of confidence that we can have in the new SI. We
review below some important aspects of this proposal in or-
der to put the problem in the context.

One of the underlying assumptions of the proposed quan-
tum SI, which is used in fixing the value of h, is that the
expression for the Josephson constant,

KJ = 2e/h , �1�

is the exact relation in terms of e and h. Since the discovery
of the Josephson effect,4 a considerable amount of work has
supported such an assumption. By considering a supercon-
ducting ring, Bloch5 arrived at the Josephson result �Eq. �1��
without relying on the Bardeen-Cooper-Schrieffer �BCS� or
Ginzburg-Landau �GL� theories but by using general argu-
ments such as gauge transformation and time-reversal invari-
ance, and the requirement that the wave function be single
valued along the ring. Similarly, by considering an infinitely
long, one-dimensional Josephson junction, Fulton6 showed
that any temperature, material, frequency, or voltage depen-
dence of KJ would violate Faraday’s law. The universality of
KJ has been tested experimentally, for example by Tsai et al.7

for different types of conventional metallic superconductors
�with uncertainty of the order 10−16� and by Klushin et al.8

by comparing arrays of metallic superconductors and oxide
high-temperature superconductor �HTS� junctions �with un-
certainty of the order 10−8�.

Another assumption included in the proposed new SI is
that the von Klitzing constant, given by

RK = h/e2, �2�

is also an exact relation. After the discovery of the quantum
Hall effect,9 Laughlin10 put forward an argument to explain
Eq. �2� by interpreting idealized looped ribbon of two-
dimensional electron gas with a perpendicular magnetic field
as a quantum pump between reservoirs connected to the
edges of the ribbon. Various authors have generalized his
argument by, for example, including the topological quantum
numbers,11 or more realistic boundary conditions.12 An ex-
perimentally obtained value of RK, for extrapolated longitu-
dinal resistivity �xx=0, has been found to be independent of
material and other device specifications with an uncertainty
level of about 10−10.13,14

Direct measurements in terms of the present SI units of V
and � of both KJ and RK have also been performed using
calculable capacitor. Using the results for e and h from other
areas of physics, expressions �1� and �2� are supported, with
an uncertainty of about 10−7.2

The third effect that also plays role in the proposed new
SI is the single-electron tunneling �SET� effect �for an early
review of this field see, for example, the paper by Averin and
Likharev15�. One possibility is to use SET devices for the
realization of the ampere at low currents through the basic
equation I=ef from the defined value of electron charge e at
the applied gate frequency f determined from atomic clocks.
Although promising results for metrology have been
achieved, for example for the cryogenic capacitor standard,16

SET devices have not yet been used to the same extent in the
present SI as devices using the other two effects above. They
have also not been used in adjustments of fundamental con-
stants. Since the SET devices are elaborate structures from
elementary particles perspective, the question that arises17 is
whether there should be many-body or quantum electrody-
namics �QED� corrections, that is, whether elementary
charge is in fact being transferred through the circuit. This
question could be asked for both other effects as well. An
argument against the corrections has been given by Langen-
berg and Schrieffer.18 Also, the value for the inverse fine
structure constant inferred from the quantum Hall measure-
ments, �−1=2RK /�0c, is within the experimental uncertainty
at level of 10−8, in agreement3 with the QED calculations of
the anomalous magnetic moment of the electron.19 Neverthe-
less, this question is still relevant when, for example, there
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are competing processes in device operation, with different
tunneling times, such as sequential SET and elastic cotunnel-
ing.

Due to the importance of the above effects in the new SI,
in particular for confidence in the exact value being assigned
to h, it is of interest to perform additional checks of the
assumptions of their exactness. One such test, the so-called
quantum metrological triangle, first proposed by Likharev
and Zorin,20 is being pursued by several groups �for current
status see a recent review by Keller17�. It provides a direct
test of the consistency of the fundamental constants involved
in the above effects. The device that is investigated for this
purpose by the team at LNE is the so-called R-pump.21 In
this device, the impedance fabricated on the same chip as the
SET pump is used to suppress the undesirable cotunneling
processes that degrade the accuracy of the device. This de-
vice concept has been proposed in Ref. 22 as an application
of the results of the analysis of the effects of the electromag-
netic fluctuations on the inelastic cotunneling. Excellent
agreement between the theory and the experimental results
was reported by Zorin et al.23 Further analysis of the ques-
tions raised in that paper with regard to the particular trans-
mission line used in the experiment was analyzed in Ref. 24.
Based on this experiment, the R-pump device was fabricated
at PTB.25 As in the conventional pump, the electron transfer
through the circuit implementing the R-pump is achieved by
the periodic modulation of the islands’ potentials. Under the
most favorable conditions of low temperature and suitable
fabrication to achieve low offset charge fluctuations, the
main processes that limit the accuracy of the device are the
cotunneling processes. In a three-junction R-pump, as the
islands’ potentials change, instead of an electron being trans-
ferred through one junction in the forward direction, charge
can be transferred in the backward direction through the
other two junctions. Analogous to macroscopic tunneling of
the phase difference in Josephson junctions, these processes
were termed macroscopic tunneling of charge �q-MQT� by
Averin and Nazarov.26 Two types of such processes exist.
Either two electrons tunnel simultaneously through two junc-
tions or one electron tunnels through both junctions. In the
first case, an electron-hole excitation remains on the island,
so those processes are called inelastic cotunneling. Processes
involving one electron are called elastic cotunneling. Both
types of processes were considered in Ref. 26 in the absence
of environmental fluctuations. Potential modulation can be
achieved by harmonic or triangular drives, each having some
advantage. For harmonic gates, theoretical analysis of the
accuracy of an R-pump was performed in Ref. 27. For trian-
gular drives, it is important to include the rates of the elastic
cotunneling processes, which dominate over inelastic cotun-
neling at low voltages and temperatures eV ,kBT���Ec,

26

where � is the mean level spacing of the island and Ec is the
charging energy of the island. Deriving expressions for elas-
tic cotunneling rates that can be used for this purpose is the
subject of this paper. We consider a dot in a metallic regime
�the transport mean-free path or the size of the dot is much
larger than the Fermi wavelength� since the R-pump used in
the experiment is typically fabricated from aluminum by the
standard double-angle evaporation technique.

Inelastic cotunneling has also been analyzed by Golubev
and Zaikin.28 Starting from a path-integral expression for the

partition function and imaginary-time action for a series of
junctions, they obtained a result for the inelastic cotunneling
rate from the imaginary part of the free energy, generalizing
our result for the double junction22 to the case of an array of
N junctions in series. At the Coulomb blockade threshold
voltage, the expression for inelastic cotunneling obtained in
the lowest order of perturbation theory in the tunnel Hamil-
tonian diverges. A diagrammatic technique has been devel-
oped in Ref. 29 that removes this divergence by summing
perturbative terms to infinite order. Cotunneling is also im-
portant for all SET devices that are being investigated for
future information processing and storage applications.30 For
example, the effect of an on-chip resistor on inelastic cotun-
neling, and therefore on the retention time of the memory
cell, was investigated by Lotkhov et al.31 Agreement with the
theory of inelastic cotunneling, in the case of a low imped-
ance environment, was reported in Ref. 32 where the results
of measurements of time-resolved single-electron tunneling
events in a single-electron trap are presented. Elastic cotun-
neling has also been studied as a way to probe
entanglement33 in relation to quantum information process-
ing applications.

The remainder of the paper is organized as follows. In
Sec. II we introduce the method; we consider a double junc-
tion system in the Coulomb blockade regime with a general
impedance environment; and we derive an expression for the
elastic cotunneling rate. In Sec. III we apply the general re-
sult to the specific geometry of the rectangular island and
obtain analytic results for low- and high-environment imped-
ance. Section IV is devoted to summary.

II. METHOD

We use the standard model for electron transport through
a double junction system. The Hamiltonian that includes the
electromagnetic environment degrees of freedom reads

H = H0 + HT, �3�

where H0=�i=S,I,DHi+Henv describes the decoupled elec-
trodes �source, drain, and the island� as well as the environ-
ment. The quasiparticle energies in the outer electrodes in-
clude fluctuations of the voltage sources due to circuit
impedance Z���, Hi=�l��l+eVi�cl,i

† cl,i �i=S ,D�. The elec-
tron-electron interaction on the island is approximated by a
charging energy term HI=����c�

†c�+Q2 /2C	, where Q is
the excess island charge and C	=C1+C2 is the island capaci-
tance. The linear circuit elements are described by the Bose
operators corresponding to the normal modes of the environ-
ment Henv=��
��b�

†b�.34,35 We are considering the tunnel-
ing perturbatively; that is, we consider high-resistance junc-
tions, Ri�max�RK ,Re Z����, for frequencies ��eVi /
. It is
convenient to proceed in the interaction picture with respect
to H0, where the tunneling Hamiltonian is given by

HT = HT1 + HT2, HTi = Hi
+ + Hi

−,
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H1
+ = �

�,p
T�pc�

†�t�cp�t�e−i1�t�, Hi
− = �Hi

+�†. �4�

The phase i=�dteṼi�t� /
=i
�cl��t�+ ̃i�t� consists of the

classical, i
�cl�=eVit /
, and the quantum fluctuation parts, ̃i,

the latter parts being treated as operators. The voltage across
each junction is given by

Vi =
V

2
+ �− 1�i Q0

C	

, �5�

where Q0=CGVG−e�CGVG /e� is the offset charge provided
by the gate source.

The expectation value of the current is given by

I = 	S−1�t,− ��Î�t�S�t,− ��
 , �6�

where S=T exp��−i /
��−�
t d�HT���� and the current operator

is given by Î�t�= �ie /
��H1
−�t�−H1

+�t��. The averaging is
taken over the equilibrium electron system as well as the
environment.

Since only even powers of the tunneling Hamiltonian con-
tribute in Eq. �6�, and we are considering the Coulomb
blockade regime �V�Vt= �e /2− �Q0�� /max�C1 ,C2��, the
lowest nonvanishing contribution to the current is given by

I =
1

�i
�3�
−�

t

d�
−�

t

d��
−�

��
d���	HT����HT����Î�t�HT���


− 	HT���Î�t�HT����HT����
�

+ 
−�

t

d�
−�

�

d��
−�

��
d���	Î�t�HT���HT����HT����


− 	HT����HT����HT���Î�t�
�� . �7�

Collecting the terms that correspond to q-MQT, we have

I =
2e


4 �
i,j=1,2�i�j�

Re�
−�

t

d�
−�

t

d��

�
−�

��
d���	Hi

−����Hj
−����H1

+�t�H2
+���


− 	H2
+���H1

+�t�Hi
−����Hj

−����
�

+ 
−�

t

d�
−�

�

d��
−�

��
d���	H1

+�t�H2
+���Hi

−����Hj
−����


− 	Hi
−����Hj

−����H2
+���H1

+�t�
�� . �8�

The phase operators ̃i are represented by a linear combina-
tion of Bose operators corresponding to the environmental
modes and as such they commute with the quasiparticle op-
erators. Using Wick’s theorem and the orthogonality of un-
perturbed states, we get for the first term in the integrand in
Eq. �8�

	H1
−����H2

−����H1
+�t�H2

+���


= �
p,�,�,m

T�p
� Tm�f��p��1 − f�����f�����1 − f��m��

�ei�p���−t�/
e−i�m���−��/
�T�pTm�
� e−i�����−t�/
ei�����−��/


− T�pTm�
� e−i�����−���/
ei���t−��/
�

� 	ei1����ei2����e−i1�t�e−i2���
 , �9�

where f��� is the Fermi distribution function and the trace is
over the environmental states.

The terms in Eq. �8� that are of a similar form to the first
term on the right-hand side of Eq. �9� are proportional to the
absolute values of the tunneling amplitudes and describe the
simultaneous tunneling of two electrons through both junc-
tions. The second term in Eq. �9� depends on the phases of
the tunnel matrix elements and describes the elastic cotun-
neling process whereby one electron tunnels through both
junctions. By collecting elastic cotunneling terms, we can
write

I = e��+ − �−� , �10�

where the forward tunneling rate is given by

�+ =
2


4Re� �
p,�,�,m

Tp�T�mTm�T�pf��p��1 − f��m��
−�

t

d�
−�

t

d��

�
−�

��
d��	�− �1 − f�����ei�p���−t�/
e−i�����−���/
ei���t−��/
e−i�m���−��/
ei1����ei2����

+ f����ei�p���−t�/
e−i�����−���/
ei���t−��/
e−i�m���−��/
ei2����ei1������e−i1�t�e−i2���f���� + ��� − ���e−i2���e−i1�t��1 − f������
� .

�11�
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For Z���→0, only the classical part of the phase i
�cl��t�

enters the exponents, and the above formula reduces to the
case of Averin and Nazarov.26 Using the Baker-Hausdorff
formula and the properties of the harmonic system, the aver-
ages in the above formula can be expressed in terms of the
phase-phase correlation functions

Ji,j�t� = 	�̃i�t� − ̃i�0��̃ j�0�


=
1

Rk


−�

�

d�
Re Zi,j���

�
�coth� 
�

2kBT
��cos��t� − 1�

− i sin��t�� , �12�

where the second equality is written with the aid of the
fluctuation-dissipation theorem,36 and where we have intro-
duced an impedance Zi,j that determines the linear response
of the circuit Vi���=Zi,j���Ij��� in the absence of tunneling.
Since elastic cotunneling is dominant at low temperatures,
kBT�e2 /C	, while at higher temperatures inelastic cotunnel-
ing dominates, we consider the zero-temperature case below.
Separating the pole of the impedance we can write

Ji,i�t� = − i�ct + J̄i�t� , �13�

where �c=e2 /2C	
, and J̄i�t� is the correlation function cor-
responding to an equivalent circuit of a single junction with
capacitance Csj =C	Ci /Cj embedded in a circuit with exter-
nal impedance Zsj =Z�Cj /C	�2.

Similarly, for i� j, we can write

Ji,j�t� = i�ct + K̄�t� , �14�

where K̄i�t� is the correlation function corresponding to an
equivalent circuit of a single junction with capacitance Csj�
=C	 embedded in a circuit with external impedance Zsj�
=ZC1C2 /C	

2 .

In order to simplify the calculations of J̄i�t� and K̄�t�, in
integrals of the form as those in Eq. �12� we approximate
the real part of the corresponding impedance by
Re Zsj�0�exp�−� /�0�, where �0= �Re Zsj�0�Csj�−1, which is
legitimate at low frequencies, ���0. Since we are inter-
ested in the effects of dissipation on cotunneling, we also
assume that the circuit impedance is Ohmic at low frequen-
cies, Z����0��Re Z�0�=R, in accordance with a typical
experimental situation.23 By performing analytic continua-
tion to imaginary times in integrals over � and �� in Eq. �11�
we obtain

�+ =
2�




1

�
�0�3

1

��2z� �
p,�,�,m

Tp,�T�,mTm,�T�pf��p�

��1 − f��m��F���,�p,�m�F���,�p,�m�

� � eV + �p − �m


�0
�2z−1

e−
eV+�p−�m


�0 ��eV + �p − �m� ,

F��,�p,�m� = �1 − f����U�1,2 +
2C1C2z

�C1 + C2�2 ,
E1 − �p + �


�0
�

− f���U�1,2 +
2C1C2z

�C1 + C2�2 ,
E2 + �m − �


�0
� ,

�15�

where z=Re Z�0� /RK and U�a ,b ,c� is Kummer’s confluent
hypergeometric function of the second kind.37 Energies Ei
=
�c−eVi correspond to the Coulomb energy increase in the
system from the initial state to the intermediate state in the
cotunneling process by electron tunneling through junction i.
The expression for the backward tunneling rate, �−, is ob-
tained from Eq. �15� by replacing V→−V, Ei→Ei+eV,
�p↔�m. In order to describe virtual electron propagation on
the island, it is convenient to express the tunneling ampli-
tudes in the coordinate representation

T�p = dy dxT�y,x���
��y��p�x� . �16�

In that way we can write

�+ =
2�




1

�
�0�3

1

��2z� d�pd��d��d�mQ��p,��,��,�m�

�f��p�F����F�����1 − f��m��

� � eV + �p − �m


�0
�2z−1

e−
eV+�p−�m


�0 ��eV + �p − �m� ,

�17�

where F����F�� ,0 ,0� and the function Q��p ,�� ,�� ,�m� is
given in terms of Green’s functions

Q��p,��,��,�m� =
1

�4 dx1dx2dy1dy2dy3dy4dz1dz2

� T�y1,x1�T��y2,x2�T�y3,z1�T��y4,z2�

� Im GR�x2,x1;�p�Im GR�y4,y2;���

�Im GR�y1,y3;���Im GR�z1,z2;�m� ,

�18�

where the points x, y, and z are located on the left electrode,
island, and right electrode, respectively. By writing Im GR

= �GR−GA� /2i, function Q can be expressed in terms of the
averaged products 	GAGR
 �Diffuson and Cooperon ladders�.
In such a way Q��p ,�� ,�� ,�m� can be represented in terms of
the quasiclassical probability P�y1 ,n1 ,0 ;y2 ,n2 , t� to find an
electron at time t at point y2 with momentum p2= pFn2 given
that at the initial moment it was in the state �y1 ,n1�, assum-
ing an isotropic Fermi surface.38 The magnetic-field depen-
dence of mesoscopic fluctuations of elastic cotunneling has
been considered by Aleiner and Glazman.39 Here, we are not
considering the effects of the magnetic field and spin-orbit
scattering, and therefore in our case Diffuson and Cooperon
correlators are equal. In the weak disorder limit �that is,
when the electron wavelength is small compared to the elas-
tic mean-free path, �� le, and for sufficiently large length
scales, le�Lmin� the probability P does not depend on n, and
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it satisfies the diffusion equation. We obtain from Eqs. �17�
and �18�

�+ =
1

�2��2��2 + 2z�e4�
�0
� eV


�0
�1+2z d��d��F����F����

� dx1dx2g1�x1�g2�x2� dtei���−���t/
P�x1,0;x2, �t�� ,

�19�

for eV�
�0. In the above formula gi�xi� is the conductance
per unit area of junction i, and � is the density of states.

III. RECTANGULAR ISLAND

The probability of quantum diffusion depends on the
shape of the island. As a specific example, we consider a
rectangular box of volume LxLyLz with junctions separated
by distance Ly and of material characterized by the diffusion
constant D. We also assume that gi�xi� are constant �gi�xi�
=gi�. In order to obtain analytic expressions, we concentrate
on the limits of low, z�1, and high circuit impedance, z
�1. By solving the diffusion equation subject to the Neu-
mann boundary conditions �during the diffusion, the electron
does not leave the island�, we get

P�x1,z1,0;x,z,t� =
1

LxLyLz
�

l,m,n=0

�

�2 − �l,0��2 − �m,0��2 − �n,0�

��− 1�mexp�− �l2/�x + m2/�y + n2/�z��2t�

�cos�l�x1/Lx�cos�n�z1/Lz�

�cos�l�x/Lx�cos�n�z/Lz� . �20�

We distinguish two regimes with respect to the characteristic
timescale 1 /�c. For sufficiently short times, an electron dif-
fuses as in an infinite medium, while for longer times the
probability of reaching the boundary is not negligible.

We first consider the case of low circuit impedance, z
�1. By using U�a ,b ,c����b−1� /��a�cb−1, and by first in-
tegrating over time and over two island surfaces perpendicu-
lar to the transport direction, we obtain for �c�max�1
�ergodic regime�, where �max= �max�Lx ,Ly ,Lz��2 /D,

I =

G1G2�

4�e3 � eV


�0
�1+2z��
�0

E1
�1+�4C1C2z/�C1 + C2�2�

+ �
�0

E2
�1+�4C1C2z/�C1 + C2�2�� , �21�

where Gi=�dxigi�xi� is the total conductance of the junction
i, and �=2 /�LxLyLz is the level spacing. In the opposite
limit of short tunneling times �free diffusion regime�,
�c�min�1, we obtain

I =
2
G1G2�

�2e3�0�y
� eV


�0
�1+2z��
�0

E1
�2�1+�2C1C2z/�C1 + C2�2��

+ 2� �
�0�2

E1E2
�1+�2C1C2z/�C1 + C2�2�

+ �
�0

E2
�2�1+�2C1C2z/�C1 + C2�2��� . �22�

Sometimes it might be more convenient to reverse the order
of integration in Eq. �19�. We use this approach in the case of
high impedance, z�1. Using the large argument behavior
U�a ,b ,c��c−1, and first integrating over energies we get

�+ =

G1G2�

��2 + 2z�e4�0
� eV


�0
�1+2z

0

�

dt�F�t��2�4�0,t/�y� ,

�23�

where �4�u ,x� is the elliptic theta function, and F�t� is given
by

F�t� = �2�
�−1
−�

�

d�ei�t/
F���

=
�0

2�
�g�E1t/
� − g�E2t/
� + i�f�E1t/
� + f�E2t/
��� ,

g��� = − �sin���si��� + cos���ci���� ,

f��� = sin���ci��� − cos���si��� , �24�

where si��� and ci��� are the sine and cosine integral func-
tions. For �c�max�1 we get

I =

G1G2�

4�e2��2 + 2z�
� eV


�0
�2z� 1

E1
+

1

E2
�V . �25�

In the opposite limit, �c�min�1, using the asymptotic be-
havior for large arguments of auxiliary functions in Eq. �24�,
g�����−2 , f�����−1, we get

I =
2
2G1G2�

��2 + 2z��2e2�y
� eV


�0
�2z� 1

E1
+

1

E2
�2

V . �26�

For cases when the characteristic diffusion time is of the
order of 1 /�c, cotunneling current can be obtained numeri-
cally from Eq. �23�. Since we have used the limiting behav-
ior of the diffusion probability for short and long times, the
results above will be applicable for an arbitrary shape of the
island as long as the junction conductances are constant
across the junction surfaces. When this is not the case, the
general expression �19� and, in particular, the power-law sup-
pression are still applicable.

IV. SUMMARY

We have investigated the influence of circuit impedance
on elastic cotunneling at zero temperature. The derived ex-
pressions are useful for accuracy considerations of the
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R-pump used in the quantum metrological triangle experi-
ment. When triangular gates are used for such a pump, the
potentials of the islands are swept over the whole Coulomb
blockade region, and therefore both elastic and inelastic co-
tunneling processes have to be taken into account. By com-
paring the results �21�, �22�, �25�, and �26� with the results
for inelastic cotunneling �that is, formulas �25� and �26� in
Ref. 22�, we obtain the crossover voltage where inelastic
cotunneling starts to dominate over elastic cotunneling,

eVcr��� min�
�c ,
 /�y�, independent of the circuit imped-
ance, which therefore coincides with the result of Averin and
Nazarov.26 The obtained non-Ohmic power-law behavior of
the tunneling current can be interpreted as renormalization of
the intermediate state energies in the cotunneling process due
to the quantum fluctuations of the environment. The derived
expressions are also of interest for the accuracy consider-
ations of classical and quantum information processing de-
vices that employ the SET effect.
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